
Journal of Global Optimization 21: 15–25, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

15

On-line k-Truck Problem and Its Competitive
Algorithms �

WEIMIN MA1,2, YINFENG XU1 and KANLIANG WANG1

1The School of Management Xi’an Jiaotong University, Xi’an, Shaanxi. P.R. China. 710049; 2The
Dept. of the Computing The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
(e-mail: cswmma@comp.polyu.edu.hk)

(Received 2 November 2000; accepted in revised form 10 April 2001)

Abstract. In this paper, based on the Position Maintaining Strategy (PMS for short), on-line schedul-
ing of k-truck problem, which is a generalization of the famous k-server problem, is originally
presented by our team. We proposed several competitive algorithms applicable under different con-
ditions for solving the on-line k-truck problem. First, a competitive algorithm with competitive ratio
2k + 1/θ is given for any θ ≥ 1. Following that, if θ ≥ (c + 1)/(c − 1) holds, then there must exist
a (2k − 1)-competitive algorithm for k-truck problem, where c is the competitive ratio of the on-line
algorithm about the relevant k-server problem. And then a greedy algorithm with competitive ratio
1 + λ/θ , where lambda is a parameter related to the structure property of a given graph, is given.
Finally, competitive algorithms with ratios 1 + 1/θ are given for two special families of graphs.

Key words: PMS, On-line k-truck problem, Competitive algorithm, Competitive ratio

1. Introduction

The k-truck problem can be stated as follows. We are given a metric space M,
and k trucks which move among the points of M, each occupying one point of M.
Repeatedly, a request (a pair of points x, y ∈ M) appears. To serve a request, an
empty truck must first move to x and then move to y with goods from x. How do
we minimize the total cost of all trucks? Let’s first consider following problems:
(1) Given a service request sequence, how can we schedule trucks so as to minim-

ize the cost?
(2) If the service request is received one by one in the process of service without

any knowledge of the future requests, how to minimize the cost as possible as
we can?

The k-truck problem aims at minimizing the cost of all trucks. Because the cost of
the trucks with goods is different from that without goods on same distance, the
total distance cannot be considered as the objective to be optimized. For simplicity,
we assume that the cost of the truck with goods is θ times of that without goods
on the same distance. Then we can take the (1 + θ) times of the empty loaded

� The authors would like to acknowledge the support of research grant from National Natural
Science Foundation of China. Grant No.19731001.



16

distance as the objective. Problem (1) is an off-line problem, and (2) is an on-
line problem. The difference between them depends on whether the known service
request sequence is total or part/problem. The problem (1) can be solved with the
dynamic programming, but the problem (2) is difficult to resolve. We must serve
the request only based on the information of the previous requests: the decision
must be made on-line as we have no information about the future requests.

The k-truck problem is a generalization of the k-taxi problem [6] and well-
known k-server problem [1]. In the k-server problem, each request contains only a
point x inM. We must move one server to (server) x. For the k-server problem, sev-
eral on-line algorithms have been previously proposed [1–6]. The k-taxi problem,
as a special example of the k-truck problem, is presented in [6]. The authors gave a
good strategy, namely, the Position Maintaining Strategy (PMS), to deal with the
on-line k-taxi problem. For k-taxi problem, some competitive algorithms that have
good competitive ratio were given. The strategy is also well used in dealing with
the on-line k-elevator problem [7].

Let M be a class of metric spaces. We call an on-line strategy c-competitive
for M, if for every metric space in M and for every request sequence, the total
cost incurred by that on-line strategy is at most c times the optimal off-line cost
of serving the same request sequence. A strategy is competitive for M if it is
c-competitive for M, for some c. Note that if a strategy is competitive then the
respective definitions hold for all metric space. For more positive and negative
results for on-line algorithms one can refer to [3].

In this paper, we first establish the mathematical model of the k-truck problem in
Section 2. And then the close relationship among k-truck problem, k-server prob-
lem, and k-taxi problem is given. With the PMS, several competitive algorithms
that have good ratios are shown in the Section 3. Finally some concluding remarks
are given in Section 4.

2. The Model of the k-Truck Problem

Let G = (V ,E) denote an edge weighted graph with n vertices and the weights
of edges satisfy the triangle inequality, where V is a metric space consisting of
n vertices, and E is the set of all weighted edges. We assume that the weight
of edge (x, y) is denoted by d(x, y) and the weights are symmetric, i.e., for all
x, y, d(x, y) = d(y, x). We assume that k trucks occupy a k-vertexes which is
a subset of V . A service request r = (a, b), a, b ∈ V , implies there are some
goods on vertex a that must be moved to vertex b (for simplicity, we assume that
the weight of goods is same all the time). A service request sequence R consists
of some service request in turn, namely R = (r1, r2, . . . , rm) where ri = (ai, bi),
ai, bi ∈ V . On-line k-truck scheduling problem is to decide to move which truck
when a new service request occurs on the basis that we have no information about
future possible requests.

All discussion is based on the following essential assumptions:



17

i) Graph G is connected;
ii) When a new service request occurs, k trucks are all free;
iii) All trucks have same load weight and the cost of the truck with goods is θ

times that of without goods on same distance, and θ ≥ 1.

For a known sequence R = (r1, r2, . . . , rm), let Copt(R) be the optimal total cost
after finishing it. For every new service request, if scheduling algorithm A can
schedule without information of the sequence next to ri , we call A an on-line
algorithm. For on-line algorithm A, if there are constants α and β satisfying:

CA(R) � αCopt(R)+ β.

Then for any possible R, A is called a competitive algorithm, where CA(R) is the
total cost with algorithm A to satisfy the sequence R.

For a request ri = (ai, bi), the procedure scheduling of a truck to ai is called
empty load. And that from ai to bi is heavy load. If there is no limit for the R and
θ , the on-line truck problem is called P . In problem P , if for any ri = (ai, bi),
d(ai, bi) > 0 and θ > 1 holds, the problem is called P1. Problem P1 is also called
the normal k-truck problem. In problem P , if there is no limit for any ri = (ai, bi )

but θ = 1, the problem is P2. Problem P2 is also called k-taxi problem. In P2, if
d(ai, bi)>0, namely ai = bi , the problem is called P3. Problem P3 is also called
normal k-taxi problem. In problem P , if d(ai, bi) = 0, namely ai = bi , it is called
P4. Problem P4 is also called k-server problem.

3. Several Results of the Competitive Ratios

In this section, several competitive algorithms and their competitive ratios are
presented. And the interrelationship among the k-truck, k-taxi and k-server prob-
lems is given.

3.1. PROBLEM P4: k-SERVER PROBLEM

The famous on-line k-server problem is presented as a special case of the on-line
truck problem in 1990 [1]. There are many results on the competitive ratio for the k-
server problem. Koutsoupias and Papadimitriou showed that there exists an on-line
algorithm for the k-server problem with competitive ratio 2k − 1[3]. Because k-
server problem is a special case of the k-truck problem, the researches concerning
the on-line truck problem must discover the relationship between them. Here we
first give following lemma [3].

LEMMA 3.1 There exists an on-line algorithm for the k-server problem with the
competitive ratio 2k − 1.



18

3.2. POSITION MAINTAINING STRATEGY

In the paper [6], the PMS was proposed and was used to get several good research
results for the k-taxi problem. For our investigation of k-truck problem, we outline
the PMS with k-truck opinion as follows.

Position Maintaining Strategy is defined as follows. For the present request ri =
(ai, bi), after ai is reached, the truck reaching ai must move from ai to bi with the
goods to complete ri . When the service for ri is finished, the PMS moves the truck
at bi back to aI (empty) before the next request arrives.

LEMMA 3.2 Let Opt be an optimal algorithm for an request sequence R =
(r1, r2, ..., rm), then we have

Copt(R) ≥ Copt(σ )+
m∑
i=1

(θ − 1) · d(ai, bi)

where σ = ((a1, a1), (a2, a2), ..., (am, am)).
Proof. For any request sequence R, the scheduling procedure of the serving

it must finish the sequence σ , and at same time
∑m

i=1 θd(ai, bi) is the necessary
cost because it is the total cost of all loaded trucks. Furthermore, the overlap of
the cost to finish the sequence σ and the cost of and

∑m
i=1 θd(ai, bi) is at most∑m

i=1 d(ai, bi).
Thus any algorithm which completes the sequence R must at least take the cost

at the sum of Copt(σ ) and
∑m

i=1(θ − 1)d(ai , bi). The inequality holds.

3.3. THE RESULTS FOR k-TRUCK PROBLEM P

With the above Lemma and PMS, the close relationship between k-server and k-
truck problem can be shown below.

THEOREM 3.1 For a given graph G if there is a c-competitive algorithm for the
k-server problem on G, then there is a (c + 1 + 1/θ)-competitive algorithm A for
the k-truck problem on G, where θ has the same meaning as above and θ ≥ 1.

Proof. For any R = (r1, r2, . . . , rm), considering k-server problem’s request
σ = (a1, a2, . . . , am), let Aσ be a c-competitive algorithm for on-line k-server
problem on graph G. We design the relevant algorithm A for on-line k-truck prob-
lem as follows.



19

For current service request ri = (ai, bi) we first schedule a truck to ai using
algorithm Aσ , then complete the ri with PMS. Thus the algorithm A’s total cost is,

CA(R) =
m∑
i=1

CA(γi)

=
m∑
i=1

(CAσ
(ai) + (θ + 1) · d(ai, bi)) (3.1)

= CAσ
(σ )+

(
1 + 1

θ

)
·

m∑
i=1

θ · d(ai, bi),

where θ is defined above and θ ≥ 1. From Lemma 2 and algorithm Aσ , we have,

CAσ
(σ ) ≤ c · Copt(σ )+ β

≤ c ·
(
Copt(R)−

m∑
i=1

((θ − 1) · d(ai, bi ))
)

+ β (3.2)

≤ c · Copt(R)+ β

and

m∑
i=1

(θ · d(ai, bi)) ≤ Copt(R). (3.3)

Combining the (3.1), (3.2) and (3.3), we get,

CA(R) ≤
(
c + 1 + 1

θ

)
· Copt(R)+ β,

where c and β are some constants.

For the k-taxi problem, as a special case of the k-truck problem, we can let
θ = 1 and then get an (c + 2)-competitive algorithm, which was given in [6].

From Theorem 3.1 and Lemma 3.1, the following Corollary holds.

COROLLARY 3.1 For a given graph G, there exists a (2k + 1/θ)-competitive
algorithm for k-truck problem on G, where θ is a constant and θ ≥ 1.

Based on the above discussion, we have no restrictions except for θ ≥ 1, in fact
if we further restrict θ , we can improve the result as follows.

THEOREM 3.2 For a given graph G, if there is a c-competitive (c ≥ 1) on-line
algorithm for the k-server problem on G and θ ≥ (c + 1)/(c − 1), then there is a
c-competitive algorithm A for the k-truck problem on G, where θ is defined above.



20

Proof. Similar to theorem 3.1, we can design an algorithm A′ such that,

CA′(R) = CAσ
(σ )+

(
1 + 1

θ

)
·

m∑
i=1

θ · d(ai, bi) (3.4)

and

CAσ
(σ ) ≤ c ·

(
Copt(R)−

m∑
i=1

(θ − 1) · d(ai, bi)
)

+ β (3.5)

where θ is defined as above and θ ≥ (c + 1)/(c − 1).
Combining the (4) and (5), we get,

CA′(R) ≤ c · Copt(R)+
[

1 + 1

θ
− c ·

(
θ − 1

θ

)] m∑
i=1

θ · d(ai, bi)+ β

≤ c · Copt(R)+ β.

The second inequality holds for that θ ≥ (c + 1)/(c − 1) and then 1 + 1/θ − c ·
(1 − 1/θ) ≤ 0, where c and β are constants.

From Theorem 3.2 and Lemma 3.1, the following Corollary holds.

COROLLARY 3.2 For a given graph G, if θ ≥ (c + 1)/(c − 1) holds, then there
exists a (2k − 1)-competitive algorithm for k-truck problem on G.

Although the k-taxi problem is the special example of the k-truck problem,
because the translation needs θ = 1 and the above corollary holds if θ ≥ (c +
1)/(c − 1) > 1, the result of above the (2k − 1) ratio does not holds for the k-taxi
problem.

3.4. ON THE CONSTRAINT GRAPHS

An extreme cases of the k-truck problem occurred when the number of trucks is
either equal to the number of the vertices of G or the number of G minus one.
For the k-server problem, when k = n the constant cost is enough to handle any
request sequence. For the case of k = n − 1, there exists a (n − 1)-competitive
algorithm [1]. For k-truck problem, we can easily use PMS to handle the case of
k = n with competitive ratio 1 + 1/θ . And for the case of k = n − 1, if each
request ri = (ai, bi) satisfies d(ai, bi) > 0, then using PMS we can also obtain a
(1 + 1/θ)-competitive algorithm. We give following lemma that can be used to get
above results.



21

LEMMA 3.3 For any algorithm A for an request sequence R = (r1, r2, . . . , rm),
we have

CA(R) ≥
m∑
i=1

θ · d(ai, bi)

and,

Copt(R) ≥
m∑
i=1

θ · d(ai, bi).
Proof. For any request sequence R,

∑m
i=1 θ · d(ai, bi) is the necessary cost

because it is the cost of the heavy load. Namely, any algorithm that completes
the sequence R must at least take the cost

∑m
i=1 θ · d(ai, bi ). The inequalities hold.

Using Lemma 3.3 and PMS, we can obtain the following theorem concerning the
two cases.

THEOREM 3.3 For a given graph G with n vertices, if k = n, then there is an
on-line algorithm for the k-truck problem on G with a competitive ratio 1 + 1/θ
and if each request ri = (ai, bi) satisfies d(ai, bi) > 0, and if k = n− 1, then with
PMS one can obtain a (1 + 1/θ)-competitive algorithm.

Proof. We assume that on the each vertex there is at most one truck. Otherwise,
we can precondition the truck locations such that each vertex has at most one truck.
Furthermore, the cost of this precondition is at most a constant (n − 1)d, where
d = maxx,y∈vd(x, y).

For the case k = n, we design the relevant on-line k-truck problem algorithm A1

as follows. For any R = (r1, r2, . . . , rm), considering the current service request
ri = (ai, bi),

If ai = bi , all trucks need not any scheduling and the cost is 0.
If ai 	= bi , because there are trucks on both ai and bi , we can schedule the truck

on ai to carry goods to bi and the truck on bi to move to ai without empty load.
Then the cost to finish ri is (1 + θ) · d(ai, bi), at same time there still is one and
only one truck on each vertex.



22

For the on-line algorithm A1, we have,

CA1(R) =
m∑
i=1

CA1(ri)+ β

≤ (θ + 1)
m∑
i=1

d(ai, bi) + β

=
(

1 + 1

θ

) m∑
i=1

θ · d(ai, bi)+ β

≤
(

1 + 1

θ

)
Copt(R)+ β

where β is the cost of precondition and β ≤ (n−1)·d, where d = maxx,y∈vd(x, y).
For the case of k = n − 1, we design the relevant on-line k-truck problem

algorithm A2 as follows. For any R = (r1, r2, . . . , rm), considering the current
service request ri = (ai, bi) satisfies d(ai, bi) > 0,

(1) If there are trucks on both ai and bi , we can schedule the truck on ai to carry
goods to bi and the truck on bi to move to ai without empty load. Then the
cost to finish ri is (1 + θ) · d(ai, bi), at same time there still is one and only
one truck on each vertex.

(2) If there is a truck on ai but not on bi , we can schedule the truck on ai to bi
with heavy load. The cost is θ · d(ai, bi). Moreover, there is not any vertex
on which there are more than one trucks.

(3) If there is a truck on bi but not on ai , we can schedule the truck on bi to ai
with empty load and then go back bi with heavy load from ai . The cost is
(1+θ) ·d(ai, bi). Moreover, there is no vertex on which there are more than
one truck.

Similar to the first case, we can prove that the on-line algorithm A2 is a (1 +
1/θ)-competitive algorithm.

3.5. SCHEDULING k-TRUCK ON A SPECIAL GRAPH

In this section we consider scheduling of k trucks on a special graph. Let dmax =
max d(vi, vj ), dmin = min d(vi, vj ), i 	= j, vi, vj ∈ V , and let

λ = dmax

dmin

We study the k-truck problem with following constrains,

(a) there is a constant C such that λ ≤ C,

(b) for each request ri = (ai, bi) satisfies d(ai, bi) > 0, and



23

(c) with respect to the present truck locations, there is at most one truck located at
a vertex.

With all of the above constraints, we present the following on-line algorithm B

to solve the k-truck problem. Let ri = (ai, bi) be the present request. Considering
the scheduling of the following cases, we can give algorithm B as follows,

(1) If there is a truck at ai and also there is a truck at bi , then B moves the truck
at a ai to bi complete the request and at the same time B moves the truck at
bi to ai with empty load. The cost of B for the ri is (1 + θ) · d(ai, bi) and at
present no vertex has more than one truck.

(2) If there is a truck at ai and no truck at bi , then B moves the truck at ai to bi
complete the request. The cost of B for the ri is θ · d(ai, bi) and at present no
vertex has more than one truck.

(3) If there is no truck at ai and there is a truck at bi , then B moves the truck at
bi to ai first without load, and after that moves from ai to bi to complete the
request complete the request. The cost of B for the ri is (1 + θ) · d(ai, bi) and
at present no vertex has more than one truck.

(4) If there is no truck at ai and bi , then B moves the truck which is the closest to
ai (suppose that the truck is locate at ci) to ai with empty load and then moves
to bi to complete the request. The cost of B for the ri is d(ci, ai)+θ ·d(ai, bi )
and again no vertex has more than one truck.

According to the above algorithm B, we can get the result as follows.

THEOREM 3.4 Under the assumption (a), (b) and (c) specified at the beginning of
this section, scheduling algorithm B for the k-truck problem achieves competitive
ratio 1 + λ/θ .

Proof. We have four possible cases for dealing with a request. For cases (1), (2)
and (3), the cost of B is at most (1 + θ) times the optimal cost for any request. For
case (4), the extra cost is d(ci, ai). Since ci is the closest occupied vertex to ai , we
have d(ci, ai) ≤ dmax . Let CB(R) denote the cost of B for R, then we have

CB(R) ≤
m∑
i=1

{max[d(bi, ai), d(ci, ai)] + θ · d(ai, bi )} + β

where β is the cost for preconditioning the truck such that each vertex has at
most one truck and it is bounded by a constant related with G.

Since ai 	= bi and d(ai, bi) > 0, we have

CB(R)∑m
i=1 d(ai, bi)

≤ θ +
∑m

i=1 max[d(bi, ai), d(ci, ai)]∑m
i=1 d(ai , bi)

+ β∑m
i=1 d(ai, bi)



24

Since d(ci, ai) ≤ dmax, and dmin ≤ d(ai, bi) ≤ dmax, we have

CB(R)∑m
i=1 d(ai, bi)

≤ θ +
∑m

i=1 dmax∑m
i=1 dmin

+ β∑m
i=1 d(ai, bi)

≤ θ + λ+ β∑m
i=1 d(ai, bi)

which implies that,

CB(R) ≤
(

1 + λ

θ

)
· θ ·

m∑
i=1

d(ai, bi)+ β

≤
(

1 + λ

θ

)
· Copt(R)+ β

3.6. COMPARISON OF TWO ALGORITHMS FOR PROBLEM P1

In sections 3.3 and 3.5, we gave two algorithms A′ and B respectively, and both of
which are competitive algorithms for P1. We may confronted with the problem of
choosing one algorithm from A′ and B in different context.

The criterion, with which one can judge which on-line algorithm is better than
the other, is the competitive ratio concerning relevant on-line algorithm. Respect-
ively the competitive ratios of algorithms A′ and B are

cA′ = 2k − 1, and

cB = 1 + λ/θ.

Let cA′ = cB , we can get a k that makes the algorithm A and B equal,

2k − 1 = 1 + λ/θ.

We get

k = 1 + λ/(2θ).

Obviously, the following theorem holds.

THEOREM 3.5 For problem P1, if on-line algorithms A′ andB at the aspect of the
competitive ratio, if θ >= (c+1)/(c−1) holds, comparing with k <= 1+λ/(2θ)
then A′ is better than B, and contrarily if k >= 1 + λ/(2θ) then B is better than
A′.

4. Concluding Remarks

For the k-taxi problem, all results are suitable as long as θ = 1, because the k-
taxi problem is only a special example of k-truck problem. For problem P1 and P4



25

in this paper, there are many theoretical problems that need to be studied further.
Another interesting problem related to the k-truck problem is that we can consider
some other optimal criteria, such as minimizing the maximum waiting time or
minimizing the sum of all empty move distances.

References

Manasse, M.S., McGeoch, L.A. and Sleator, D.D. (1990), Competitive algorithms for server
problems, Journal of Algorithms, 11: 208–230.

Ben David, S. and Borodin, A. (1994), A new measure for the study of the on-line algorithm,
Algorithmica 11: 73–91.

Koutsoupias, E. and Papadimitriou, C. (1994) On the k-server conjecture, STOC. 507–511.
Alon, N., Karp, R.M. and Peleg, D. et al. (1995), A graph-theoretic game and its application to the

k-server problem, SIAM J.Comput. 24(1): 78–100.
Du, D. Z. (1991), k-server problem and competitive algorithm, Practice and Acquaintanceship of

Mathematics, 4: 36–40.
Xu, Y.F. and Wang, K.L. (1997), On-line k-taxi problem and competitive algorithm, Journal of Xi’an

Jiaotong University, 1: 56–61.
Xu, Y.F., Wang, K.L. and Zhu, B. (1999) On the k-taxi problem, Journal of Information, Vol. 2, No.

4. 429–434.
Ma, W.M., Xu, Y.F. and Wang, K.L. (1999), On-line k-truck scheduling problem and its competitive

strategies, Journal of Northwest University (Natural Science, P.R. China), Vol. 29, No. 4: 254–
258.

Xu, Y.F., Wang, K.L. and Ding, J.H. (1999), On-line k-taxi scheduling on a constrained graph and its
competitive algorithm, Journal of System Engineering (P.R. China), No. 4..




